NumPy - 数组上的迭代
NumPy 包包含一个迭代器对象numpy.nditer
。 它是一个有效的多维迭代器对象,可以用于在数组上进行迭代。 数组的每个元素可使用 Python 的标准Iterator
接口来访问。
让我们使用arange()
函数创建一个 3X4 数组,并使用nditer
对它进行迭代。
示例 1
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print('原始数组是:')
print(a)
print('\n迭代的数据是:' )
for x in np.nditer(a):
print (x,)
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
修改后的数组是:
0 5 10 15 20 25 30 35 40 45 50 55
示例 2
迭代的顺序匹配数组的内容布局,而不考虑特定的排序。 这可以通过迭代上述数组的转置来看到。
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print('原始数组是:')
print( a)
print( '\n')
print( '原始数组的转置是:' )
b = a.T
print( b)
print ('\n')
print ('修改后的数组是:')
for x in np.nditer(b):
print (x,)
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
修改后的数组是:
0 5 10 15 20 25 30 35 40 45 50 55
迭代顺序
如果相同元素使用 F 风格顺序存储,则迭代器选择以更有效的方式对数组进行迭代。
示例 1
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print('原始数组是:')
print(a)
print ('\n')
print ('原始数组的转置是:')
b = a.T
print (b)
print ('\n')
print ('以 C 风格顺序排序:' )
c = b.copy(order='C')
print(c)
for x in np.nditer(c):
print(x,)
print('\n')
print('以 F 风格顺序排序:')
c = b.copy(order='F')
print(c)
for x in np.nditer(c):
print(x),
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
以 C 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55
以 F 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55
示例 2
可以通过显式提醒,来强制nditer
对象使用某种顺序:
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print '原始数组是:'
print a
print '\n'
print '以 C 风格顺序排序:'
for x in np.nditer(a, order = 'C'):
print x,
print '\n'
print '以 F 风格顺序排序:'
for x in np.nditer(a, order = 'F'):
print x,
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
以 C 风格顺序排序:
0 5 10 15 20 25 30 35 40 45 50 55
以 F 风格顺序排序:
0 20 40 5 25 45 10 30 50 15 35 55
修改数组的值
nditer
对象有另一个可选参数op_flags
。 其默认值为只读,但可以设置为读写或只写模式。 这将允许使用此迭代器修改数组元素。
示例
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print '原始数组是:'
print a
print '\n'
for x in np.nditer(a, op_flags=['readwrite']):
x[...]=2*x
print '修改后的数组是:'
print a
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
修改后的数组是:
[[ 0 10 20 30]
[ 40 50 60 70]
[ 80 90 100 110]]
外部循环
nditer
类的构造器拥有flags
参数,它可以接受下列值:
序号 | 参数及描述 |
---|---|
1. | c_index 可以跟踪 C 顺序的索引 |
2. | f_index 可以跟踪 Fortran 顺序的索引 |
3. | multi-index 每次迭代可以跟踪一种索引类型 |
4. | external_loop 给出的值是具有多个值的一维数组,而不是零维数组 |
示例
在下面的示例中,迭代器遍历对应于每列的一维数组。
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print '原始数组是:'
print a
print '\n'
print '修改后的数组是:'
for x in np.nditer(a, flags = ['external_loop'], order = 'F'):
print x,
输出如下:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
修改后的数组是:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]
广播迭代
如果两个数组是可广播的,nditer
组合对象能够同时迭代它们。 假设数组a
具有维度 3X4,并且存在维度为 1X4 的另一个数组b
,则使用以下类型的迭代器(数组b
被广播到a
的大小)。
示例
import numpy as np
a = np.arange(0,60,5)
a = a.reshape(3,4)
print '第一个数组:'
print a
print '\n'
print '第二个数组:'
b = np.array([1, 2, 3, 4], dtype = int)
print b
print '\n'
print '修改后的数组是:'
for x,y in np.nditer([a,b]):
print "%d:%d" % (x,y),
输出如下:
第一个数组:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]]
第二个数组:
[1 2 3 4]
修改后的数组是:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4