NumPy - 数组属性
ndarray对象的属性
属性 | 说明 |
---|---|
.ndim | 秩,即轴的数量或维度的数量 |
.shape | ndarray对象的尺度,对于矩阵:n行m列 |
.size | ndarray对象元素的个数,即n*m的值 |
.dtype | ndarray对象的元素类型 |
.itemsize | ndarray对象中每个元素的大小,以字节为单位 如果元素均为整数,则缺省为int32,如果元素中有浮点数,则缺省为float64。 |
这一章中,我们会讨论 NumPy 的多种数组属性。
NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axis),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
NumPy的数组中比较重要ndarray对象属性有:
ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
ndarray.data
:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。
ndarray.shape
这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小。
示例 1
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print(a.shape)
输出如下:
(2, 3)
示例 2
#这会调整数组大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print(a)
输出如下:
[[1, 2]
[3, 4]
[5, 6]]
示例 3
NumPy 也提供了reshape
函数来调整数组大小。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print(b)
输出如下:
[[1, 2]
[3, 4]
[5, 6]]
ndarray.ndim
这一数组属性返回数组的维数。
示例 1
#等间隔数字的数组
import numpy as np
a = np.arange(24)
print(a)
输出如下:
[0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
示例 2
#一维数组
import numpy as np
a = np.arange(24)
a.ndim
# 现在调整其大小
b = a.reshape(2,4,3)
print(b)
# b 现在拥有三个维度
输出如下:
[[[ 0, 1, 2]
[ 3, 4, 5]
[ 6, 7, 8]
[ 9, 10, 11]]
[[12, 13, 14]
[15, 16, 17]
[18, 19, 20]
[21, 22, 23]]]
numpy.itemsize
这一数组属性返回数组中每个元素的字节单位长度。
示例 1
#数组的 dtype 为 int8(一个字节)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.int8)
print(x.itemsize)
输出如下:
1
示例 2
#数组的 dtype 现在为 float32(四个字节)
import numpy as np
x = np.array([1,2,3,4,5], dtype = np.float32)
print(x.itemsize)
输出如下:
4
numpy.flags
ndarray
对象拥有以下属性。这个函数返回了它们的当前值。
序号 | 属性及描述 |
---|---|
1. | C_CONTIGUOUS (C) 数组位于单一的、C 风格的连续区段内 |
2. | F_CONTIGUOUS (F) 数组位于单一的、Fortran 风格的连续区段内 |
3. | OWNDATA (O) 数组的内存从其它对象处借用 |
4. | WRITEABLE (W) 数据区域可写入。 将它设置为flase 会锁定数据,使其只读 |
5. | ALIGNED (A) 数据和任何元素会为硬件适当对齐 |
6. | UPDATEIFCOPY (U) 这个数组是另一数组的副本。当这个数组释放时,源数组会由这个数组中的元素更新 |
示例
下面的例子展示当前的标志。
import numpy as np
x = np.array([1,2,3,4,5])
print(x.flags)
输出如下:
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
UPDATEIFCOPY : False